$
U = \op{span } \left\{
\mat{-3\\-2\\3\\-2},
\mat{2\\3\\-1\\-1}
\right\} $
Write an algabraic specification of the [[../02 Areas/Math/Span|Span]] of this [[../02 Areas/Math/Linear Subspace|Linear Subspace]].
$\begin{align}
x_{1}\mat{-3\\-2\\3\\-2} + x_{2}\mat{2\\3\\-1\\-1} &=
\underbrace{ \mat{-3 & 2 \\-2 & 3\\3 & -1\\-2 & -1}\mat{x_{1}\\x_{2}}}_{A}\\
U &= \op{Col}(A) \\
&\sim \augmented{cc|c}{
-3 & 2 & b_{1} \\
-2 & 3 & b_{2} \\
3 & -1 & b_{3} \\
-2 & -1 & b_{4}
}\\
&\sim \augmented{cc|c}{
-3 & 2 & b_{1} \\
-2 & 3 & b_{2} \\
0 & 1 & b_{1}+ b_{3} \\
0 & -4 & -b_{2}+b_{4}
}\\
&\sim \augmented{cc|c}{
-2 & 2 & b_{1} \\
0 & \frac{5}{3} & b_{2} \\
0 & 1 & b_{1}+ b_{3} \\
0 & 0 & 4b_{1} -b_{2} + 4b_{3} +b_{4}
}\\
&\sim \augmented{cc|c}{
-3 & 2 & b_{1} \\
0 & \frac{5}{3} & b_{2} \\
0 & 0 & \frac{7}{5}b_{1} -\frac{3}{5}b_{2}+b_{3} \\
0 & 0 & 4b_{1} -b_{2} + 4b_{3} +b_{4}
}
\end{align}
$
$\begin{align}
U &= \setbuild{
\vec b \in \R^4
}{
\begin{split}
\frac{7}{5} b_{1} - \frac{3}{5} b_{2} + b_{3} &= 0 \\
4b_{1} - b_{2} + 4b_{3} + b_{4} &= 0
\end{split}
}
\end{align}
$
*Note*: alternative solution is to get the [[../02 Areas/Math/Reduced Row Echelon Form|RREF]] of $\augmented{c|c}{A & I}$.