$ \large
\let u = \setbuild{\vec x \in \R^3}{ x_{1}+x_{2}+x_{3}=0 }
$
>[!warning]
i double dog dare you to PROVE that this set is closed
ship it and clip it folks
Prove that this [[../02 Areas/Math/Set|Set]] is [[../02 Areas/Math/Closure|Closed]] under addition.
$ \begin{align}
\let \vec x, \vec y &\in U\\
x_{1}+x_{2}+x_{3} &= 0\\
y_{1}+y_{2}+y_{3} &= 0\\
(x_{1}+y_{1})+(x_{2}+y_{2})+(x_{3}+y_{3}) &=
(x_{1}+x_{2}+x_{3}) + (y_{1}+y_{2}+y_{3}) \\
&= 0 + 0\\
&= 0
\end{align}$
Prove that the set is [[../02 Areas/Math/Closure|Closed]] under [[../02 Areas/Math/Scalar|Scalar]] multiplication.
$ \begin{align}
\let \vec x &\in U, k \in \R\\
x_{1}+x_{2}+x_{3}&=0 \\
k\vec x &= k(x_{1}+x_{2}+x_{3})\\
&= k(0)\\
&= 0
\end{align} $