$\huge
\vec x(t) = \vec A \sin (\omega t + \phi) + \vec B \\
$
or
$\huge
\vec x(t) = \vec A \cos (\omega t + \phi) + \vec B \\
$
$\begin{align}
\deriv{\vec x}{t} &= \vec A \cos (\omega t + \phi)\omega \\
\deriv{^2\vec x}{t^2} &= -\vec A \sin (\omega t + \phi)\omega^2 \\
\end{align
$