$\huge \vec x(t) = \vec A \sin (\omega t + \phi) + \vec B \\ $ or $\huge \vec x(t) = \vec A \cos (\omega t + \phi) + \vec B \\ $ $\begin{align} \deriv{\vec x}{t} &= \vec A \cos (\omega t + \phi)\omega \\ \deriv{^2\vec x}{t^2} &= -\vec A \sin (\omega t + \phi)\omega^2 \\ \end{align $