Incomplete proof for an analytic solution for [[../02 Areas/Physics/Damped Harmonic Oscillators|Damped Harmonic Oscillators]] that is just *wrong*.
We can encode the state of this system with a [[State Space Representation]] by encoding each point in some 2 [[Dimension]] [[../Math/Linear Subspace|Linear Space]] with each coordinate representing $(x, x)$.
$\huge y =\mat{x\\x''} $
We can then evaluate:
$
\begin{align}
\let y &= \mat{ x\\x'} \\
y' &= \mat{x'\\x''} \\
y' &= \mat{ \alpha^{-1}\pa{-x''-kx }\\ -\alpha x' -kx } \\
&= \mat{ -\alpha^{-1} x'' - kx \\ -\alpha x' -kx } \\
&= \mat{ -\alpha^{-1} x'' - kx \\ -\alpha x' -kx } \\
&= \mat{ -\alpha^{-1} \pa{-\alpha x'-kx} - kx \\ -\alpha x' -kx } \\
&= \mat{
x' + (\alpha^{-1}-k)x \\
-\alpha x' - kx
}\\
&=\mat{
(\alpha^{-1}-k)x + x' \\
- kx -\alpha x'
}\\
&=\mat{
\alpha^{-1}-k & 1\\ -k & -\alpha }\mat{x\\x'}
\end{align}
$
Which gives us:
$y' =\mat{ \alpha^{-1}-k & 1\\ -k & -\alpha }y $
$
\begin{align}
y &=A_{0}+e^{ \mat{ \alpha^{-1}-k & 1\\ -k & -\alpha }}\\
y' &=
\end{align} $