Example Problem for a [[../02 Areas/Physics/Damped Harmonic Oscillators|Damped Harmonic Oscillator]]
There is a sign being dragged by the wind:
![[../00 Excalidraw/202509261357 .excalidraw]]
Lets say we know the wind blew the sign $5\degree$, and the wind speed is $10 \op{\frac{m}{s}}$.
$ \begin{align}
\vec D &=-bV \\
\vec W &= mg \\
\end{align}$
$\begin{align}
mg \sin \theta &\approx bV \\
b &\approx \frac{mg\theta}{V} = mg \frac{5 \degree}{10 \pu{ ms-1 } } \\
\frac{b}{2m} &= \frac{g 5 \degree}{2\cdot 10 \pu{ ms-1 }} \\
g &\approx 10 \pu{ ms-1 }\\
\frac{b}{2m} &=\frac{5\degree}{2} \pu{ deg/s } \\
x(t) &=
5\degree e^{- \frac{5\degree}{2}t }
\sin\pa{
\sqrt{ \frac{g}{l} }t + \frac{\pi}{2}
}
\end{align}$