[[../02 Areas/Physics/Damped Harmonic Oscillators#SHM with driving forces (Resonance)]] Example:
Let there be some damped spring system.
![[../00 Excalidraw/202509291340 .excalidraw]]
$\huge \begin{align}
k &= 1 \pu{ N/m }\\
m &= 200 \pu{ {kg} }\\
b &= 700 \pu{ \frac{N\cdot s}m } \\
\omega &= 1 \pu{ rad/s } \\
\omega_{0}^2 &= \frac{k}{m} = 5\cdot 10^{-3} \\
\omega_{0} = \sqrt{ 5\cdot 10^{-3} } &= 2\cdot 10^{-1}
\end{align}$
$ \huge \begin{align}
\omega_{0}^2 - \omega^2 &= 5 \cdot 10^{-3} - 1 = -0.995 \\
A_{0} &= \frac{F_{0}}{200}\pa{ (-0.995)^2 + \frac{700^2 1^2}{200^2} }^{-1/2}\\
A_{0} &= \frac{F_{0}}{200} \cdot \frac{1}{\sqrt{ 13.25 }}\\
\phi_{0} &= \arctan\pa{
\frac{-0.995}{ 1 \cdot \frac{700}{200} }
} \\
&\approx -16\degree\\
\end{align}$
So the full solution for $\vec x(t)$ is
$\huge
\vec x(t) = \frac{F_{0}}{200} \cdot \frac{1}{\sqrt{ 13.25 }} \sin(t - 16\degree)
$