$ \huge \begin{align} \frac{dy}{dx} &= \cdots \\ \deriv{y}{x} &= \cdots \\ y'(x) &= \cdots \\ \dot y(x) &= \cdots \\ f^{n} &= 0 \\ \deriv{^2y}{x^2} &= 2 \\ \end{align} $ $\huge \begin{align} y(x,t) &= \cdots \\ \frac{\partial y}{\partial x} &= \cdots \\ \frac{\partial y}{\partial t} &= \cdots \\ \partial_{x} (f) &= x^2\\ \partial _{x} (y) &= x^2\\ \partial _{t} (y) &= x^2\\ (\partial_{x} y)(x, t) &= 0 \end{align} $