$ \huge \begin{align}
\frac{dy}{dx} &= \cdots \\
\deriv{y}{x} &= \cdots \\
y'(x) &= \cdots \\
\dot y(x) &= \cdots \\
f^{n} &= 0 \\
\deriv{^2y}{x^2} &= 2 \\
\end{align} $
$\huge \begin{align}
y(x,t) &= \cdots \\
\frac{\partial y}{\partial x} &= \cdots \\
\frac{\partial y}{\partial t} &= \cdots \\
\partial_{x} (f) &= x^2\\
\partial _{x} (y) &= x^2\\
\partial _{t} (y) &= x^2\\
(\partial_{x} y)(x, t) &= 0
\end{align} $