Example of solving a [[../02 Areas/Math/Differential Equations|Differential Equation]] (specifically [[../02 Areas/Physics/Damped Harmonic Oscillators|Damped Harmonic Oscillators]]) using the [[../02 Areas/Math/Laplace Transform|Laplace Transform]] / [[Complex Exponential]].
$\huge \begin{align}
F = m\ddot x &= -\mu \dot x -kx \\
\ddot x + \frac{\mu}{m}\dot x + \frac{k}{m}x &= 0 \\
\end{align}$
Assuming $x=e^{st}$,
$\huge \begin{align}
\ddot x + \frac{\mu}{m}\dot x + \frac{k}{m}x &= 0 \\
\D_{t}^{2}\{e^{st}\} + \frac{\mu}{m} \D_{t}\{e^{st}\} + \frac{k}{m}e^{st} &= 0 \\
s^{2}e^{st}+ \frac{\mu s}{m}e^{st}+\frac{k}{m}e^{st}&= 0 \\
e^{st}\pa{ s^{2} + \frac{\mu}{m}s+\frac{k}{m}} &= 0\\
{ s^{2} + \frac{\mu}{m}s+\frac{k}{m}} &= 0 \\
\end{align}$
We can then use the quadratic equation to find the value of $s$ that satisfies this equation
$\huge
\begin{align}
s &= \frac{-b \pm \sqrt{ b^{2} - 4ac }}{2a} \\
\end{align} $