$\huge \begin{align}
m \ddot x &= -b\dot x -kx \\
m \ddot x + b \dot x+kx &= 0 \\
\end{align}$
$ \huge \let x = Ae^{st} $
$\huge \begin{align}
m\D^{2}\set{Ae^{st}} + b\D\set{Ae^{st}}+kAe^{st} &= 0\\
Ams^{2}e^{st} + Abse^{st}+Ake^{st} &= 0 \\
Ae^{st}\pa{ms^{2}+bs+k} &= 0 \\
\nexists s \in \C : e^{st} &= 0 \\
ms^{2}+bs+k &= 0\\
\end{align}$
$\huge
\begin{align}
s&= \frac{-b \pm \sqrt{ b^{2} - 4mk }}{2m} \\
s&= -\frac{b}{2m} \pm \frac{\sqrt{ b^{2}-4mk }}{ \sqrt{ (2m)^{2} }} \\
s&= -\frac{b}{2m} \pm \frac{\sqrt{ b^{2}-4mk }}{ \sqrt{ 4m^{2} }} \\
s &= -\frac{b}{2m} \pm \sqrt{ \frac{b^{2}}{4m^{2}} - \frac{4mk}{4m^{2}} } \\
s &= -\frac{b}{2m} \pm \sqrt{ \frac{b^{2}}{4m^{2}} - \frac{k}{m} } \\
\end{align} $
$\huge
\begin{align}
\omega &= \sqrt{ \frac{b^{2}}{4m^{2}} - \frac{k}{m} } \\
x&= \frac{x_{0}}{2} e^{t\left( -\frac{b}{2m} + \omega \right)} + \frac{A_{0}}{2} e^{t\pa{ - \frac{b}{2m} - \omega }} \\
x&= \frac{x_{0}}{2} e^{- \frac{-bt}{2m}}\pa{e^{\omega t}+e^{-\omega t}}\\
x&= \frac{x_{0}}{2} e^{- \frac{-bt}{2m}}\pa{
\cos (\omega t) +i\sin(\omega t) +\cos(\omega t) + i\sin(-\omega t))
}\\
x&= \frac{x_{0}}{2} e^{- \frac{-bt}{2m}}\pa{
2\cos(\omega t)+i\sin(\omega t) -i\sin(\omega t)
}\\
x&= \frac{x_{0}}{2} e^{- \frac{-bt}{2m}}\pa{ 2\cos(\omega t) }\\
x&= x_{0}e^{- \frac{bt}{2m}}\cos(\omega t)
\end{align} $
Assuming this is an underdamped system,
$\huge \frac{k}{m} > \frac{b^{2}}{4m^{2}} $
$\huge \begin{align}
\let \omega &= \sqrt{ \frac{b^{2}}{4m^{2}} - \frac{k}{m} } \\
x &= e^{-\frac{bt}{2m} }\pa{
\cos \omega t + i\sin \omega t
}
\end{align}
$