Let $E$ be the set of all even natural numbers.
$\huge E =\setbuild{n \in \N}{2n} $
[[Linear Transformation|nonlinear]] storytelling
$\tiny \color{red} \N \cong E \therefore |\N| = |E| $
$\huge \begin{align}
f: \N &\to E \\
f(n) &= 2n \\
\\
f^{-1}: E &\to \N \\
f^{-1}(k) &= \frac{n}{2}
\end{align}$
$\tiny \color{red} \N \cong E \therefore |\N| = |E| $
$\tiny \color{red} \N \cong E \therefore |\N| = |E| $
$\huge
\color{red}\boxed{ \color{peach}
\N \cong E \therefore |\N| = |E|
}
$
$\huge \N \cong \Q $
![[Pasted image 20251116220554.png|invert_S]]